Impact of Sublethal Insecticides Exposure on Vespa magnifica : Insights from Physiological and Transcriptomic Analyses

Insecticides are widely used to boost crop yields, but their effects on non-target insects like are still poorly understood. Despite its ecological and economic significance, has been largely neglected in risk assessments. This study employed physiological, biochemical, and transcriptomic analyses t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Insects (Basel, Switzerland) Switzerland), 2024-10, Vol.15 (11), p.839
Hauptverfasser: Hu, Qingmei, Fan, Sijia, Liu, Kaiqing, Shi, Feng, Cao, Xueting, Lin, Yiquan, Meng, Renyuan, Liu, Zichao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Insecticides are widely used to boost crop yields, but their effects on non-target insects like are still poorly understood. Despite its ecological and economic significance, has been largely neglected in risk assessments. This study employed physiological, biochemical, and transcriptomic analyses to investigate the impact of sublethal concentrations of thiamethoxam, avermectin, chlorfenapyr, and β-cypermethrin on Although larval survival rates remained unchanged, both pupation and fledge rates were significantly reduced. Enzymatic assays indicated an upregulation of superoxide dismutase and catalase activity alongside a suppression of peroxidase under insecticide stress. Transcriptomic analysis revealed increased adenosine triphosphate-related processes and mitochondrial electron transport activity, suggesting elevated energy expenditure to counter insecticide exposure, potentially impairing essential functions like flight, hunting, and immune response. The enrichment of pathways such as glycolysis, hypoxia-inducible factor signaling, and cholinergic synaptic metabolism under insecticide stress highlights the complexity of the molecular response with notable effects on learning, memory, and detoxification processes. These findings underscore the broader ecological risks of insecticide exposure to non-target insects and highlight the need for further research into the long-term effects of newer insecticides along with the development of strategies to safeguard beneficial insect populations.
ISSN:2075-4450
2075-4450
DOI:10.3390/insects15110839