Global dynamics, Neimark-Sacker bifurcation and hybrid control in a Leslie’s prey-predator model

In the present study, we explore the topological classifications at fixed points, global dynamics, Neimark-Sacker bifurcation and hybrid control in the two-dimensional discrete-time Leslie’s prey-predator model. It is proved that for all involved parameters a,b,c,d,h and α, discrete-time Leslie’s pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Alexandria engineering journal 2022-12, Vol.61 (12), p.11391-11404
Hauptverfasser: Khan, A.Q., Bukhari, S.A.H., Almatrafi, M.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present study, we explore the topological classifications at fixed points, global dynamics, Neimark-Sacker bifurcation and hybrid control in the two-dimensional discrete-time Leslie’s prey-predator model. It is proved that for all involved parameters a,b,c,d,h and α, discrete-time Leslie’s prey-predator model has boundary and interior fixed points: Ex0(ab,0),Exy+aαcd+bα,adcd+bα respectively. Then by linear stability theory, local dynamics with different topological classifications are investigated at fixed points: Ex0(ab,0),Exy+aαcd+bα,adcd+bα. Further for the discrete-time Leslie’s prey-predator model, existence of periodic points are also investigated. By bifurcation theory, it is also proved that if (a,b,c,d,h,α)∈NSBExy+aαcd+bα,adcd+bα then at interior fixed point: Exy+aαcd+bα,adcd+bα, discrete Leslie’s prey-predator model undergo Neimark-Sacker bifurcation and no other bifurcation occurs at it. Moreover, hybrid control strategy is applied to control Neimark-Sacker bifurcation. Boundedness and global dynamics of the discrete-time Leslie’s prey-predator model are also investigated. Finally, obtained results are numerically verified.
ISSN:1110-0168
DOI:10.1016/j.aej.2022.04.042