ZDC: A Zone Data Compression Method for Solid State Drive Based Flash Memory

Solid-state drive (SSD) with flash memory as the storage medium are being widely used in various data storage systems. SSD data compression means that data is compressed before it is written to Not-And (NAND) Flash. Data compression can reduce the amount of data written in NAND Flash and improve the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2020-04, Vol.12 (4), p.623
Hauptverfasser: Ye, Xin, Zhai, Zhengjun, Li, Xiaochang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solid-state drive (SSD) with flash memory as the storage medium are being widely used in various data storage systems. SSD data compression means that data is compressed before it is written to Not-And (NAND) Flash. Data compression can reduce the amount of data written in NAND Flash and improve the performance and reliability of SSDs. At present, the main problem facing data compression of SSD is how to improve the efficiency of data compression and decompression. In order to improve the performance of data compression and decompression, this study proposes a method of SSD data deduplication based on zone division. First, this study divides the storage space of the SSD into zones and divides them into one hot zone and multiple cold zones according to the different erasing frequency. Second, the data in each zone is divided into hot data and cold data according to the number of erasures. At the same time, the address mapping table in the hot zone is loaded into the cache. Finally, when there is a write or read request, the SSD will selectively compress or decompress the data according to the type of different zones. Through simulation tests, the correctness and effectiveness of this study are verified. The research results show that the data compression rate of this research result can reach 70–95%. Compared with SSD without data compression, write amplification is reduced by 5 to 30%, and write latency is reduced by 5 to 25%. The research results have certain reference value for improving the performance and reliability of SSD.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym12040623