Spatial Estimation of Regional PM2.5 Concentrations with GWR Models Using PCA and RBF Interpolation Optimization
In recent years, geographically weighted regression (GWR) models have been widely used to address the spatial heterogeneity and spatial autocorrelation of PM2.5, but these studies have not fully considered the effects of all potential variables on PM2.5 variation and have rarely optimized the models...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2022-11, Vol.14 (21), p.5626 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recent years, geographically weighted regression (GWR) models have been widely used to address the spatial heterogeneity and spatial autocorrelation of PM2.5, but these studies have not fully considered the effects of all potential variables on PM2.5 variation and have rarely optimized the models for residuals. Therefore, we first propose a modified GWR model based on principal component analysis (PCA-GWR), then introduce five different spatial interpolation methods of radial basis functions to correct the residuals of the PCA-GWR model, and finally construct five combinations of residual correction models to estimate regional PM2.5 concentrations. The results show that (1) the PCA-GWR model can fully consider the contributions of all potential explanatory variables to estimate PM2.5 concentrations and minimize the multicollinearity among explanatory variables, and the PM2.5 estimation accuracy and the fitting effect of the PCA-GWR model are better than the original GWR model. (2) All five residual correction combination models can better achieve the residual correction optimization of the PCA-GWR model, among which the PCA-GWR model corrected by Multiquadric Spline (MS) residual interpolation (PCA-GWRMS) has the most obvious accuracy improvement and more stable generalizability at different time scales. Therefore, the residual correction of PCA-GWR models using spatial interpolation methods is effective and feasible, and the results can provide references for regional PM2.5 spatial estimation and spatiotemporal mapping. (3) The PM2.5 concentrations in the study area are high in winter months (January, February, December) and low in summer months (June, July, August), and spatially, PM2.5 concentrations show a distribution of high north and low south. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs14215626 |