From Point Cloud Data to Building Information Modelling: An Automatic Parametric Workflow for Heritage

Building Information Modelling (BIM) is a globally adapted methodology by government organisations and builders who conceive the integration of the organisation, planning, development and the digital construction model into a single project. In the case of a heritage building, the Historic Building...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2020-04, Vol.12 (7), p.1094
Hauptverfasser: Andriasyan, Mesrop, Moyano, Juan, Nieto-Julián, Juan Enrique, Antón, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Building Information Modelling (BIM) is a globally adapted methodology by government organisations and builders who conceive the integration of the organisation, planning, development and the digital construction model into a single project. In the case of a heritage building, the Historic Building Information Modelling (HBIM) approach is able to cover the comprehensive restoration of the building. In contrast to BIM applied to new buildings, HBIM can address different models which represent either periods of historical interpretation, restoration phases or records of heritage assets over time. Great efforts are currently being made to automatically reconstitute the geometry of cultural heritage elements from data acquisition techniques such as Terrestrial Laser Scanning (TLS) or Structure From Motion (SfM) into BIM (Scan-to-BIM). Hence, this work advances on the parametric modelling from remote sensing point cloud data, which is carried out under the Rhino+Grasshopper-ArchiCAD combination. This workflow enables the automatic conversion of TLS and SFM point cloud data into textured 3D meshes and thus BIM objects to be included in the HBIM project. The accuracy assessment of this workflow yields a standard deviation value of 68.28 pixels, which is lower than other author’s precision but suffices for the automatic HBIM of the case study in this research.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs12071094