Fast Computation of Singular Oscillatory Fourier Transforms

We consider the problem of the numerical evaluation of singular oscillatory Fourier transforms  ∫ab‍x-aαb-xβf(x)eiωxdx, where α>-1 and β>-1. Based on substituting the original interval of integration by the paths of steepest descent, if f is analytic in the complex region G containing [a, b],...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Abstract and Applied Analysis 2014-01, Vol.2014 (2014), p.1149-1156
Hauptverfasser: Kang, Hongchao, Shao, Xinping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the problem of the numerical evaluation of singular oscillatory Fourier transforms  ∫ab‍x-aαb-xβf(x)eiωxdx, where α>-1 and β>-1. Based on substituting the original interval of integration by the paths of steepest descent, if f is analytic in the complex region G containing [a, b], the computation of integrals can be transformed into the problems of integrating two integrals on [0, ∞) with the integrand that does not oscillate and decays exponentially fast, which can be efficiently computed by using the generalized Gauss Laguerre quadrature rule. The efficiency and the validity of the method are demonstrated by both numerical experiments and theoretical results. More importantly, the presented method in this paper is also a great improvement of a Filon-type method and a Clenshaw-Curtis-Filon-type method shown in Kang and Xiang (2011) and the Chebyshev expansions method proposed in Kang et al. (2013), for computing the above integrals.
ISSN:1085-3375
1687-0409
DOI:10.1155/2014/984834