STRONG LAWS OF LARGE NUMBERS FOR ARRAYS OF ROWWISE INDEPENDENT RANDOM ELEMENTS
Let {X_(nk)} be an array of rowwise independent random elements in a separable Banach space of type p+δ with EX_(nk)=0 for all k, n. The complete convergence (and hence almost sure convergence) of n^(-1/p)∑_(k=1)^n X_(nk) to 0, 1≤p<2, is obtained when {X_(nk)} are uniformly bounded by a random varia...
Gespeichert in:
Veröffentlicht in: | International Journal of Mathematics and Mathematical Sciences 1987, Vol.1987 (4), p.805-814 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let {X_(nk)} be an array of rowwise independent random elements in a separable Banach space of type p+δ with EX_(nk)=0 for all k, n. The complete convergence (and hence almost sure convergence) of n^(-1/p)∑_(k=1)^n X_(nk) to 0, 1≤p<2, is obtained when {X_(nk)} are uniformly bounded by a random variable X with E|X|&(2p)<∞. When the array{X_(nk)} consists of i.i.d, random elements, then it is shown that n^(-1/p)∑_(k=1)^n X_(nk) converges completely to 0 if and only if E||‖X_(11)‖^(2p)<∞. |
---|---|
ISSN: | 0161-1712 1687-0425 |
DOI: | 10.1155/S0161171287000899 |