UG-schematic Annotation for Event Nominals: A Case Study in Mandarin Chinese

Divergence of languages observed at the surface level is a major challenge encountered by multilingual data representation, especially when typologically distant languages are involved. Drawing inspiration from a formalist Chomskyan perspective towards language universals, Universal Grammar (UG), th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational linguistics - Association for Computational Linguistics 2024-06, Vol.50 (2), p.535-561
Hauptverfasser: Li, Wenxi, Zhang, Yutong, Emerson, Guy, Sun, Weiwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Divergence of languages observed at the surface level is a major challenge encountered by multilingual data representation, especially when typologically distant languages are involved. Drawing inspiration from a formalist Chomskyan perspective towards language universals, Universal Grammar (UG), this article uses deductively pre-defined universals to analyze a multilingually heterogeneous phenomenon, event nominals. In this way, deeper universality of event nominals beneath their huge divergence in different languages is uncovered, which empowers us to break barriers between languages and thus extend insights from some synthetic languages to a non-inflectional language, Mandarin Chinese. Our empirical investigation also demonstrates this UG-inspired schema is effective: With its assistance, the inter-annotator agreement (IAA) for identifying event nominals in Mandarin grows from 88.02% to 94.99%, and automatic detection of event-reading nominalizations on the newly-established data achieves an accuracy of 94.76% and an score of 91.3%, which significantly surpass those achieved on the pre-existing resource by 9.8% and 5.2%, respectively. Our systematic analysis also sheds light on nominal semantic role labeling. By providing a clear definition and classification on arguments of event nominal, the IAA of this task significantly increases from 90.46% to 98.04%.
ISSN:0891-2017
1530-9312
DOI:10.1162/coli_a_00504