Tidewater-glacier response to supraglacial lake drainage

The flow speed of the Greenland Ice Sheet changes dramatically in inland regions when surface meltwater drains to the bed. But ice-sheet discharge to the ocean is dominated by fast-flowing outlet glaciers, where the effect of increasing surface melt on annual discharge is unknown. Observations of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-10, Vol.13 (1), p.6065-6065, Article 6065
Hauptverfasser: Stevens, Laura A., Nettles, Meredith, Davis, James L., Creyts, Timothy T., Kingslake, Jonathan, Hewitt, Ian J., Stubblefield, Aaron
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The flow speed of the Greenland Ice Sheet changes dramatically in inland regions when surface meltwater drains to the bed. But ice-sheet discharge to the ocean is dominated by fast-flowing outlet glaciers, where the effect of increasing surface melt on annual discharge is unknown. Observations of a supraglacial lake drainage at Helheim Glacier, and a consequent velocity pulse propagating down-glacier, provide a natural experiment for assessing the impact of changes in injected meltwater, and allow us to interrogate the subglacial hydrological system. We find a highly efficient subglacial drainage system, such that summertime lake drainage has little net effect on ice discharge. Our results question the validity of common remote-sensing approaches for inferring subglacial conditions, knowledge of which is needed for improved projections of sea-level rise. The effect of increasing surface melt on annual discharge is unknown for the Greenland Ice Sheet. Here, the authors find that Greenland’s largest single-glacier contributor to sea-level rise accommodates basal floods following supraglacial lake-drainage events with limited impact on ice flow.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-33763-2