Comparing Human Versus Machine-Driven Cadastral Boundary Feature Extraction
The objective to fast-track the mapping and registration of large numbers of unrecorded land rights globally has led to the experimental application of Artificial Intelligence in the domain of land administration, and specifically the application of automated visual cognition techniques for cadastra...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2019-07, Vol.11 (14), p.1662 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The objective to fast-track the mapping and registration of large numbers of unrecorded land rights globally has led to the experimental application of Artificial Intelligence in the domain of land administration, and specifically the application of automated visual cognition techniques for cadastral mapping tasks. In this research, we applied and compared the ability of rule-based systems within Object-Based Image Analysis (OBIA), as opposed to human analysis, to extract visible cadastral boundaries from very high-resolution World View-2 images, in both rural and urban settings. From our experiments, machine-based techniques were able to automatically delineate a good proportion of rural parcels with explicit polygons where the correctness of the automatically extracted boundaries was 47.4% against 74.24% for humans and the completeness of 45% for the machine compared to 70.4% for humans. On the contrary, in the urban area, automatic results were counterintuitive: even though urban plots and buildings are clearly marked with visible features such as fences, roads and tacitly perceptible to eyes, automation resulted in geometrically and topologically poorly structured data. Thus, these could neither be geometrically compared with human digitisation, nor actual cadastral data from the field. The results of this study provide an updated snapshot with regards to the performance of contemporary machine-driven feature extraction techniques compared to conventional manual digitising. In our methodology, using an iterative approach of segmentation and classification, we demonstrated how to overcome the weaknesses of having undesirable segments due to intra-parcel and inter-parcel variability, when using segmentation approaches for cadastral feature delineation. We also demonstrated how we can easily implement a geometric comparison framework within the Esri’s ArcGIS software environment and firmly believe the developed methodology can be reproduced. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs11141662 |