Study on the Prediction and Improvement of Indoor Natural Light and Outdoor Comfort in Apartment Complexes Using Daylight Factor and Physiologically Equivalent Temperature Indices
Urbanization has intensified population concentration, and the quality of residential environments has deteriorated owing to the accelerated construction of high-rise and high-density buildings. In this study, a quantitative analysis is conducted regarding the natural lighting and outdoor thermal co...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2018-07, Vol.11 (7), p.1872 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Urbanization has intensified population concentration, and the quality of residential environments has deteriorated owing to the accelerated construction of high-rise and high-density buildings. In this study, a quantitative analysis is conducted regarding the natural lighting and outdoor thermal comfort of apartment complexes, and satisfactory improvement measures for both factors are investigated. Natural lighting and outside microclimate modeling simulations and statistical analyses are performed on 27 cases using the layout planning factors of an apartment complex. In addition, outdoor thermal comfort analysis is performed by applying heat island mitigation factors (greening and reflective asphalt pavement) to cases satisfying the condition of daylight factor (DF ≥ 75%). To improve natural lighting, the azimuth (correlation coefficient −0.812) should be considered, and to improve outdoor thermal comfort, the aspect ratio should be considered (−0.402). The results of applying heat island mitigation factors suggest that greening can improve outdoor thermal comfort to a greater extent than reflective asphalt pavement. The significance of this study is that the measures to improve residential comfort have been determined by considering the factors affecting the residential environment. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en11071872 |