Prediction of B cell epitopes in proteins using a novel sequence similarity-based method
Prediction of B cell epitopes that can replace the antigen for antibody production and detection is of great interest for research and the biotech industry. Here, we developed a novel BLAST-based method to predict linear B cell epitopes. To that end, we generated a BLAST-formatted database upon a da...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2022-08, Vol.12 (1), p.13739-13739, Article 13739 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Prediction of B cell epitopes that can replace the antigen for antibody production and detection is of great interest for research and the biotech industry. Here, we developed a novel BLAST-based method to predict linear B cell epitopes. To that end, we generated a BLAST-formatted database upon a dataset of 62,730 known linear B cell epitope sequences and considered as a B cell epitope any peptide sequence producing ungapped BLAST hits to this database with identity ≥ 80% and length ≥ 8. We examined B cell epitope predictions by this method in tenfold cross-validations in which we considered various types of non-B cell epitopes, including 62,730 peptide sequences with verified negative B cell assays. As a result, we obtained values of accuracy, specificity and sensitivity of 72.54 ± 0.27%, 81.59 ± 0.37% and 63.49 ± 0.43%, respectively. In an independent dataset incorporating 503 B cell epitopes, this method reached accuracy, specificity and sensitivity of 74.85%, 99.20% and 50.50%, respectively, outperforming state-of-the-art methods to predict linear B cell epitopes. We implemented this BLAST-based approach to predict B cell epitopes at
http://imath.med.ucm.es/bepiblast
. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-18021-1 |