Physico-Mechanical Property Evaluation and Morphology Study of Moisture-Treated Hemp–Banana Natural-Fiber-Reinforced Green Composites
The development of many engineered product applications for automobiles and aircraft parts has initiated the search for novel materials as alternatives to metal matrix composites (MMCs). Natural-fiber-reinforced polymer composites offer distinct advantages such as biodegradability, eco-friendliness,...
Gespeichert in:
Veröffentlicht in: | Journal of composites science 2023-07, Vol.7 (7), p.266 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The development of many engineered product applications for automobiles and aircraft parts has initiated the search for novel materials as alternatives to metal matrix composites (MMCs). Natural-fiber-reinforced polymer composites offer distinct advantages such as biodegradability, eco-friendliness, flexibility, low density, and higher specific strengths, etc. This study focuses on natural-fiber (hemp and banana)-fabric-reinforced polymer composites suitable for exterior-engineered parts. The hand lay-up process is used to fabricate these hybrid composites. Exterior-engineered products are highly susceptible to moisture, which can deteriorate their mechanical performances, including their tensile and flexural strength, thereby affecting the durability of the hybrid composites. Therefore, the hybrid composites are subjected to water absorption tests, where samples are immersed in distilled water for week-long intervals. After each interval, the water-absorbed specimens are tested for their tensile and flexural characteristics as per ASTM D-3039 and ASTM D-790, respectively. The moisture treatment had a notable impact on the composite materials, causing a slight decrease in the tensile strength by 2% due to the diminished lateral strength in the interlaminar fibers. Contrary to expectations, the flexural strength of the composites improved by 2.7% after the moisture treatment, highlighting the potential of the moisture treatment process to enhance the elastic properties of such composites. The dimensions of the specimens changed after the water immersion test, resulting in increased longitudinal and decreased lateral dimensions. The surface morphologies of the composite failure samples showed fiber delamination, fiber breakage, voids, and matrix fractures. |
---|---|
ISSN: | 2504-477X 2504-477X |
DOI: | 10.3390/jcs7070266 |