Numerical Analysis of Urine Flow with Multiple Sizes of Double-J Stents

This study investigated which sizes of double-J stents are more effective in achieving an acceptable urine flow through stenotic and stented ureters. Sixty four computational fluid dynamics models of the combinations of two different gauge ureters (4.57 mm and 5.39 mm in diameter) with four differen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-06, Vol.10 (12), p.4291
Hauptverfasser: Kim, Hyoung-Ho, Kim, Kyung-wuk, Choi, Young Ho, Lee, Seung Bae, Baba, Yasutaka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigated which sizes of double-J stents are more effective in achieving an acceptable urine flow through stenotic and stented ureters. Sixty four computational fluid dynamics models of the combinations of two different gauge ureters (4.57 mm and 5.39 mm in diameter) with four different levels of ureteral and four different sizes of double-J stents were developed for the numerical analysis of urine flow in the ureter. Luminal, extraluminal, and total flow rates along the ureter were measured, and the flow patterns around the ports and side holes were investigated. For the 4.57-mm ureter, the total flow rate for each gauge of stent was 23–63 mL/h (5 Fr), 20–47 mL/h (6 Fr), 17–35 mL/h (7 Fr), and 16–26 mL/h (8 Fr) and for the 5.39-mm ureter, the total flow rate for each gauge of stent was 43–147 mL/h (5 Fr), 36–116 mL/h (6 Fr), 29–92 mL/h (7 Fr), and 26–71 mL/h (8 Fr). With a 74% stenosis, all stents allowed a low flow rate, and the differences in flow rates between the stents were small. At the other levels of stenosis, 5 Fr stents allowed greater flow rates than the 8 Fr stents. The luminal flow rate increased just before the area of stenosis and decreased after the stenosis because of the increase and decrease in the luminal flow through the side holes before and after the stenosis. Therefore, a larger double-J stent is not favorable in achieving an acceptable urine flow through the stenotic and stented ureters. The results in this study could not be necessarily correlated with clinical situation because peristalsis, viscosity of the urine and real format of the ureter were not considered in our model. In vivo experiments are necessary for confirmation of our findings. Double J stents are commonly used in the ureteral stenosis or occlusion, especially due to ureter stones which obstruct the flow of urine. Clinicians choose the size of double J stent on the basis of their clinical experience. Here, we tried to know which sizes of double J stents are better for sufficient urine flow. According to various documents that try to determine the optimal shape of double J stents to increase the urine flow through the ureter, mostly bigger stent is recommended to occur maximum urine flow. However, in case of ureter with stenosis or occlusion, the right size of the double J stent may vary depending on the degree of stenosis in the ureter. To find appropriate stent size for the ureter with stenosis, computational fluid dynamics was conducted. This study
ISSN:2076-3417
2076-3417
DOI:10.3390/app10124291