Binary and ternary toxicological interactions of clothianidin and eight commonly used pesticides on honey bees (Apis mellifera)
Although many toxicological evaluations have been conducted for honey bees (Apis mellifera), most of these studies have only focused on the effects of individual chemicals. However, honey bees are usually exposed to pesticide mixtures under field conditions. In this study, we examined the effects of...
Gespeichert in:
Veröffentlicht in: | Ecotoxicology and environmental safety 2021-10, Vol.223, p.112563, Article 112563 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although many toxicological evaluations have been conducted for honey bees (Apis mellifera), most of these studies have only focused on the effects of individual chemicals. However, honey bees are usually exposed to pesticide mixtures under field conditions. In this study, we examined the effects of individual pesticides and mixtures of clothianidin (CLO) with eight other pesticides [carbaryl (CAR), thiodicarb (THI), chlorpyrifos (CHL), beta-cyfluthrin (BCY), gamma-cyhalothrin (GCY), tetraconazole (TET), spinosad (SPI) and indoxacarb (IND)] on honey bees using a feeding method. Toxicity tests of a 4-day exposure to individual pesticides revealed that CLO had the highest toxicity to A. mellifera, with an LC50 value of 0.24 μg a.i. mL-1, followed by IND and CHL with LC50 values of 3.40 and 3.56 μg a.i. mL-1, respectively. SPI and CAR had relatively low toxicities, with LC50 values of 7.19 and 8.42 μg a.i. mL-1, respectively. In contrast, TET exhibited the least toxicity, with an LC50 value of 258.7 μg a.i. mL-1. Most binary mixtures of CLO with other pesticides exerted additive and antagonistic effects. However, all the ternary mixtures containing CLO and TET (except for CLO+TET+THD) elicited synergistic responses to bees. Either increased numbers of components in the mixture or/and a unique mode of action appeared to be responsible for the higher toxicity of mixtures. Our findings emphasized the need for risk assessment of pesticide mixtures rather than the individual chemicals. Our data also provided information that might help growers avoid increased toxicity and unnecessary injury to pollinators.
[Display omitted]
•Nine pesticide exerted significant different feeding (oral) toxicities to honey bees.•Interactive patterns were revealed in mixtures of clothianidin with 8 pesticides.•Scale of aggravated toxicity add as the number of components in mixture increase.•Data are valuable for guiding pesticide selection and minimizing risks to bees. |
---|---|
ISSN: | 0147-6513 1090-2414 |
DOI: | 10.1016/j.ecoenv.2021.112563 |