Effect of chondroitin sulfate proteoglycans on neuronal cell adhesion, spreading and neurite growth in culture

As one major component of extracellular matrix (ECM) in the central nervous system, chondroitin sul- fate proteoglycans (CSPGs) have long been known as inhibitors enriched in the glial scar that prevent axon regeneration after injury. Although many studies have shown that CSPGs inhibited neurite out...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural regeneration research 2018-02, Vol.13 (2), p.289-297
Hauptverfasser: Jin, Jingyu, Tilve, Sharada, Huang, Zhonghai, Zhou, Libing, Geller, Herbert, Yu, Panpan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As one major component of extracellular matrix (ECM) in the central nervous system, chondroitin sul- fate proteoglycans (CSPGs) have long been known as inhibitors enriched in the glial scar that prevent axon regeneration after injury. Although many studies have shown that CSPGs inhibited neurite out- growth in vitro using different types of neurons, the mechanism by which CSPGs inhibit axonal growth remains poorly understood. Using cerebellar granule neuron (CGN) culture, in this study, we evaluated the effects of different concentrations of both immobilized and soluble CSPGs on neuronal growth, in- cluding cell adhesion, spreading and neurite growth. Neurite length decreased while CSPGs concentration arised, meanwhile, a decrease in cell density accompanied by an increase in cell aggregates formation was observed. Soluble CSPGs also showed an inhibition on neurite outgrowth, but it required a higher concen- tration to induce cell aggregates formation than coated CSPGs. We also found that growth cone size was significantly reduced on CSPGs and neuronal cell spreading was restrained by CSPGs, attributing to an inhibition on lamellipodial extension. The effect of CSPGs on neuron adhesion was further evidenced by interference reflection microscopy (IRM) which directly demonstrated that both CGNs and cerebral cortical neurons were more loosely adherent to a CSPG substrate. These data demonstrate that CSPGs have an effect on cell adhesion and spreading in addition to neurite outgrowth.
ISSN:1673-5374
1876-7958
DOI:10.4103/1673-5374.226398