Open-independent, open-locating-dominating sets: structural aspects of some classes of graphs

Let $G=(V(G),E(G))$ be a finite simple undirected graph with vertex set $V(G)$, edge set $E(G)$ and vertex subset $S\subseteq V(G)$. $S$ is termed \emph{open-dominating} if every vertex of $G$ has at least one neighbor in $S$, and \emph{open-independent, open-locating-dominating} (an $OLD_{oind}$-se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics and theoretical computer science 2022-01, Vol.24, no. 1 (Graph Theory), p.1-18
Hauptverfasser: Cappelle, Márcia R., Coelho, Erika, Foulds, Les R., Longo, Humberto J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $G=(V(G),E(G))$ be a finite simple undirected graph with vertex set $V(G)$, edge set $E(G)$ and vertex subset $S\subseteq V(G)$. $S$ is termed \emph{open-dominating} if every vertex of $G$ has at least one neighbor in $S$, and \emph{open-independent, open-locating-dominating} (an $OLD_{oind}$-set for short) if no two vertices in $G$ have the same set of neighbors in $S$, and each vertex in $S$ is open-dominated exactly once by $S$. The problem of deciding whether or not $G$ has an $OLD_{oind}$-set has important applications that have been reported elsewhere. As the problem is known to be $\mathcal{NP}$-complete, it appears to be notoriously difficult as we show that its complexity remains the same even for just planar bipartite graphs of maximum degree five and girth six, and also for planar subcubic graphs of girth nine. Also, we present characterizations of both $P_4$-tidy graphs and the complementary prisms of cographs that have an $OLD_{oind}$-set.
ISSN:1365-8050
1365-8050
DOI:10.46298/dmtcs.8440