Performance Analysis of Bimodulus Frame Structures Based on Deformation Energy Decomposition Method

Some biological materials have bimodulus properties. The elastic modulus in the tensile state is different from its value in the compressive state. The deformation energy decomposition method for bimodulus material can be obtained, and then the deformation energy decompositions of the isotropic and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresources 2024-05, Vol.19 (3), p.4718-4726
Hauptverfasser: Xiangcheng Zhang, Juye Wang, Panxu Sun, Hao Xu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Some biological materials have bimodulus properties. The elastic modulus in the tensile state is different from its value in the compressive state. The deformation energy decomposition method for bimodulus material can be obtained, and then the deformation energy decompositions of the isotropic and bimodulus frame structure are further realized. On the basis of the quantitative results of the basic deformation energy, the proportions of the areas dominated by shear deformation energy were proposed, which can characterize the ductility of the frame structures. The cases showed that the ratio of the elastic modulus in tensile state to the elastic modulus in compressive state is the important index of bimodulus material, which affects the deformation energy distribution of the bimodulus structure. When the ratio of bimodulus material for the deep beam was 0.2, the proportions of the regions dominated by shear deformation energy for the deep beams located on the 1st to 3rd floors were reduced by 10.00%, 7.77%, and 11.11%, respectively. The bimodulus material improved the ductility performance of the frame structure.
ISSN:1930-2126