A Method for Correction of Dynamic Errors When Measuring Flat Surfaces

This paper presents a new method for correction of dynamic errors occurring when measuring flat surfaces in the presence of mechanical effects. Mechanical effects cause inertial forces and moments that affect the moving components of measuring instruments, thereby causing dynamic errors. The study p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2024-08, Vol.24 (16), p.5154
Hauptverfasser: Dichev, Dimitar, Diakov, Dimitar, Zhelezarov, Iliya, Valkov, Stefan, Ormanova, Maria, Dicheva, Ralitza, Kupriyanov, Oleksandr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a new method for correction of dynamic errors occurring when measuring flat surfaces in the presence of mechanical effects. Mechanical effects cause inertial forces and moments that affect the moving components of measuring instruments, thereby causing dynamic errors. The study proposes a mathematical model, on the basis of which algorithms for correction of dynamic errors can be developed. The basic concept of the model is based on determining the optimal estimate in the current coordinate point on the basis of the theoretical model of the measured surface and the information from the measurement that contains errors caused by internal and external factors. Based on this model, an algorithm for real-time data processing has been developed. The algorithm works in "predictor-corrector" mode at each step of which the best estimate is obtained. The estimate is based on minimizing the variance of a random component in which the main values are formed from the accumulated statistical data of the error of the model and the measurement error. This paper presents the results of experimental studies, carried out with simulations of mechanical effects in four modes. The results confirm the high efficiency of the algorithm for high-accuracy measurement of flat surfaces in the presence of mechanical effects.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24165154