The Enigmatic Genetic Landscape of Hereditary Hearing Loss: A Multistep Diagnostic Strategy in the Italian Population
Hearing loss is the most frequent sensorineural disorder, affecting approximately 1:1000 newborns. Hereditary forms (HHL) represent 50-60% of cases, highlighting the relevance of genetic testing in deaf patients. HHL is classified as non-syndromic (NSHL-70% of cases) or syndromic (SHL-30% of cases)....
Gespeichert in:
Veröffentlicht in: | Biomedicines 2023-02, Vol.11 (3), p.703 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hearing loss is the most frequent sensorineural disorder, affecting approximately 1:1000 newborns. Hereditary forms (HHL) represent 50-60% of cases, highlighting the relevance of genetic testing in deaf patients. HHL is classified as non-syndromic (NSHL-70% of cases) or syndromic (SHL-30% of cases). In this study, a multistep and integrative approach aimed at identifying the molecular cause of HHL in 102 patients, whose
analysis already showed a negative result, is described. In NSHL patients, multiplex ligation probe amplification and long-range PCR analyses of the
gene solved 13 cases, while whole exome sequencing (WES) identified the genetic diagnosis in 26 additional ones, with a total detection rate of 47.6%. Concerning SHL, WES detected the molecular cause in 55% of cases. Peculiar findings are represented by the identification of four subjects displaying a dual molecular diagnosis and eight affected by non-syndromic mimics, five of them presenting Usher syndrome type 2. Overall, this study provides a detailed characterisation of the genetic causes of HHL in the Italian population. Furthermore, we highlighted the frequency of Usher syndrome type 2 carriers in the Italian population to pave the way for a more effective implementation of diagnostic and follow-up strategies for this disease. |
---|---|
ISSN: | 2227-9059 2227-9059 |
DOI: | 10.3390/biomedicines11030703 |