Development of a selective fluorescence-based enzyme assay for glycerophosphodiesterase family members GDE4 and GDE7

Lysophosphatidic acid (LPA) is a lipid mediator that regulates various processes, including cell migration and cancer progression. Autotaxin (ATX) is a lysophospholipase D-type exoenzyme that produces extracellular LPA. In contrast, glycerophosphodiesterase (GDE) family members GDE4 and GDE7 are int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lipid research 2021-01, Vol.62, p.100141-100141, Article 100141
Hauptverfasser: Kitakaze, Keisuke, Tsuboi, Kazuhito, Tsuda, Maho, Takenouchi, Yasuhiro, Ishimaru, Hironobu, Okamoto, Yasuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lysophosphatidic acid (LPA) is a lipid mediator that regulates various processes, including cell migration and cancer progression. Autotaxin (ATX) is a lysophospholipase D-type exoenzyme that produces extracellular LPA. In contrast, glycerophosphodiesterase (GDE) family members GDE4 and GDE7 are intracellular lysophospholipases D that form LPA, depending on Mg2+ and Ca2+, respectively. Since no fluorescent substrate for these GDEs has been reported, in the present study, we examined whether a fluorescent ATX substrate, FS-3, could be applied to study GDE activity. We found that the membrane fractions of human GDE4- and GDE7-overexpressing human embryonic kidney 293T cells hydrolyzed FS-3 in a manner almost exclusively dependent on Mg2+ and Ca2+, respectively. Using these assay systems, we found that several ATX inhibitors, including α-bromomethylene phosphonate analog of LPA and 3-carbacyclic phosphatidic acid, also potently inhibited GDE4 and GDE7 activities. In contrast, the ATX inhibitor S32826 hardly inhibited these activities. Furthermore, FS-3 was hydrolyzed in a Mg2+-dependent manner by the membrane fraction of human prostate cancer LNCaP cells that express GDE4 endogenously but not by those of GDE4-deficient LNCaP cells. Similar Ca2+-dependent GDE7 activity was observed in human breast cancer MCF-7 cells but not in GDE7-deficient MCF-7 cells. Finally, our assay system could selectively measure GDE4 and GDE7 activities in a mixture of the membrane fractions of GDE4- and GDE7-overexpressing human embryonic kidney 293T cells in the presence of S32826. These findings allow high-throughput assays of GDE4 and GDE7 activities, which could lead to the development of selective inhibitors and stimulators as well as a better understanding of the biological roles of these enzymes. [Display omitted]
ISSN:0022-2275
1539-7262
DOI:10.1016/j.jlr.2021.100141