Multivariate Analysis of a Wind–PV-Based Water Pumping Hybrid System for Irrigation Purposes

The Green Deal and increased nutritional needs are driving factors in human activities nowadays. Agriculture is an essential economic sector that can profit from the application of renewable energy sources by the assimilation of off-grid, arid and barren terrains. Power supplied by hybrid systems fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2021-06, Vol.14 (11), p.3231
Hauptverfasser: Stoyanov, Ludmil, Bachev, Ivan, Zarkov, Zahari, Lazarov, Vladimir, Notton, Gilles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Green Deal and increased nutritional needs are driving factors in human activities nowadays. Agriculture is an essential economic sector that can profit from the application of renewable energy sources by the assimilation of off-grid, arid and barren terrains. Power supplied by hybrid systems for water pumping is a solution for overcoming the stochastic character of the renewable energy sources. This paper presents a sizing methodology for a hybrid system with wind and PV generation and water tank storage, based on the consideration of the entire energy conversion chain with energy models and a one-year operation simulation. The PV generator is modeled using a reduced Durisch’s model, while for the wind generator a piecewise interpolation is used. The methodology is applied for sites in Bulgaria with specific agricultural crops and meteorological data. Combinations of PV (different technologies) and wind (different types) generators and water tank capacities are considered and discussed. The combinations are compared on the basis of three criteria: the investment cost, the satisfaction of crop requirements and system oversizing. The possibility for the introduction of battery storage is also examined. The results show some trends in the hybrid system sizing and the possibility to apply the proposed methodology for various sites, generators and crops.
ISSN:1996-1073
1996-1073
DOI:10.3390/en14113231