Brain volume loss in individuals over time: Source of variance and limits of detectability
Brain volume loss measured from magnetic resonance imaging (MRI) is a marker of neurodegeneration and predictor of disability progression in MS, and is commonly used to assess drug efficacy at the group level in clinical trials. Whether measures of brain volume loss could be useful to help guide man...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2020-07, Vol.214, p.116737-116737, Article 116737 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Brain volume loss measured from magnetic resonance imaging (MRI) is a marker of neurodegeneration and predictor of disability progression in MS, and is commonly used to assess drug efficacy at the group level in clinical trials. Whether measures of brain volume loss could be useful to help guide management of individual patients depends on the relative magnitude of the changes over a given interval to physiological and technical sources of variability.
To understand the relative contributions of neurodegeneration vs. physiological and technical sources of variability to measurements of brain volume loss in individuals.
Multiple T1-weighted 3D MPRAGE images were acquired from a healthy volunteer and MS patient over varying time intervals: 7 times on the first day (before breakfast at 7:30AM and then every 2 h for 12 h), each day for the next 6 working days, and 6 times over the remainder of the year, on 2 Siemens MRI scanners: 1.5T Sonata (S1) and 3.0T TIM Trio (S2). Scan-reposition-rescan data were acquired on S2 for daily, monthly and 1-year visits. Percent brain volume change (PBVC) was measured from baseline to each follow-up scan using FSL/SIENA. We estimated the effect of physiologic fluctuations on brain volume using linear regression of the PBVC values over hourly and daily intervals. The magnitude of the physiological effect was estimated by comparing the root-mean-square error (RMSE) of the regression of all the data points relative to the regression line, for the hourly scans vs the daily scans. Variance due to technical sources was assessed as the RMSE of the regression over time using the intracranial volume as a reference.
The RMSE of PBVC over 12 h, for both scanners combined, (“Hours”, 0.15%), was similar to the day-to-day variation over 1 week (“Days”, 0.14%), and both were smaller than the RMS error over the year (0.21%). All of these variations, however, were smaller than the scan-reposition-rescan RMSE (0.32%). The variability of PBVC for the individual scanners followed the same trend. The standard error of the mean (SEM) for PBVC was 0.26 for S1, and 0.22 for S2. From these values, we computed the minimum detectable change (MDC) to be 0.7% on S1 and 0.6% on S2. The location of the brain along the z-axis of the magnet inversely correlated with brain volume change for hourly and daily brain volume fluctuations (p |
---|---|
ISSN: | 1053-8119 1095-9572 1095-9572 |
DOI: | 10.1016/j.neuroimage.2020.116737 |