An analysis of noise pollution emitted by moving MF285 Tractor using different mixtures of biodiesel, bioethanol and diesel through artificial intelligence

In the present study, the noise pollution from different compositions of biodiesel, bioethanol, and diesel fuels in MF285 Tractor was studied in the second and third gears from two positions: driver and bystander, at 1000 and 1600 r/min, and running on 10 different fuel levels. For data analysis, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of low frequency noise, vibration, and active control vibration, and active control, 2019-06, Vol.38 (2), p.270-281
Hauptverfasser: Ghaderi, Mohammad, Javadikia, Hossein, Naderloo, Leila, Mostafaei, Mostafa, Rabbani, Hekmat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present study, the noise pollution from different compositions of biodiesel, bioethanol, and diesel fuels in MF285 Tractor was studied in the second and third gears from two positions: driver and bystander, at 1000 and 1600 r/min, and running on 10 different fuel levels. For data analysis, the ANFIS network, neural network, and response surface methodology were applied. Comparing the means of noise pollution at different levels demonstrated that the B25E6D69 fuel, made up of 25% biodiesel and 6% bioethanol, had the lowest noise pollution. The lowest noise pollution was at 1000 r/min. Although the noise pollution emitted in the third gear was a little more than that emitted in the second gear. All the resultant models, laid by response surface methodology, neural network, and ANFIS had excellent results. Considering the statistical criteria, the best models with high correlation coefficients and low mean square errors were ANFIS, response surface methodology, and artificial neural network models, respectively.
ISSN:1461-3484
2048-4046
DOI:10.1177/1461348418823572