Essential oils and isolated compounds for tick control: advances beyond the laboratory
Tick control is a worldwide challenge due to its resistance to acaricides. Essential oils (EOs) and isolated compounds (EOCs) are potential alternatives for tick control technologies. A review with EOs and EOCs, under field and semi-field conditions, was performed based on Scopus, Web of Science and...
Gespeichert in:
Veröffentlicht in: | Parasites & vectors 2023-11, Vol.16 (1), p.415-415, Article 415 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tick control is a worldwide challenge due to its resistance to acaricides. Essential oils (EOs) and isolated compounds (EOCs) are potential alternatives for tick control technologies.
A review with EOs and EOCs, under field and semi-field conditions, was performed based on Scopus, Web of Science and PubMed databases. Thirty-one studies published between 1991 and 2022 were selected. The search was performed using the following keywords: "essential oil" combined with "tick," "Ixodes," "Argas," "Rhipicephalus," "Amblyomma," "Hyalomma," "Dermacentor," "Haemaphysalis" and "Ornithodoros." The words "essential oil" and "tick" were searched in the singular and plural.
The number of studies increased over the years. Brazil stands out with the largest number (51.6%) of publications. The most studied tick species were Rhipicephalus microplus (48.4%), Ixodes scapularis (19.4%), Amblyomma americanum and R. sanguineus sensu lato (9.7% each). Cattle (70%) and dogs (13%) were the main target animal species. Regarding the application of EOs/EOCs formulations, 74% of the studies were conducted with topical application (spray, pour-on, foam, drop) and 26% with environmental treatment (spray). Efficacy results are difficult to evaluate because of the lack of information on the methodology and standardization. The nanotechnology and combination with synthetic acaricides were reported as an alternative to enhance the efficacy of EOs/EOCs. No adverse reactions were observed in 86.6% of the studies evaluating EOs/EOCs clinical safety. Studies regarding toxicity in non-target species and residues are scarce.
This article provides a comprehensive review on the use of EOs and EOCs to reduce tick infestations, in both the hosts and the environment. As future directions, we recommend the chemical characterization of EOs, methodology standardization, combination of EOs/EOCs with potential synergists, nanotechnology for new formulations and safety studies for target and non-target organisms, also considering the environmental friendliness. |
---|---|
ISSN: | 1756-3305 1756-3305 |
DOI: | 10.1186/s13071-023-05969-w |