Nitrogen and Phosphorus Co-Doped Carbon Dots for Selective Detection of Nitro Explosives
In this work, a highly selective and sensitive method has been developed for the detection of trinitrophenol (TNP), which is a dangerous explosive. For this purpose, N and P co-doped carbon dots (NP-Cdots) have been used. Synthesis of N and P co-doped carbon dots has been carried out by a simple and...
Gespeichert in:
Veröffentlicht in: | ACS omega 2020-02, Vol.5 (6), p.2710-2717 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, a highly selective and sensitive method has been developed for the detection of trinitrophenol (TNP), which is a dangerous explosive. For this purpose, N and P co-doped carbon dots (NP-Cdots) have been used. Synthesis of N and P co-doped carbon dots has been carried out by a simple and quick method. X-ray photoelectron spectroscopy analysis was carried out to detect the doping of N and P. These carbon dots are insoluble in water (inNP-Cdots). These carbon dots were functionalized by treating them with conc. HNO3 so that they become water-soluble (wsNP-Cdots). These dots were characterized by different analytical techniques such as IR, UV–vis, and fluorescence spectroscopy. The as-prepared wsNP-Cdots have good fluorescence properties. The average diameter of wsNP-Cdots is found to be 5.7 nm with an interlayer spacing (d-spacing) of 0.16 nm. The as-prepared wsNP-Cdots are highly sensitive and selective toward TNP, as observed using a fluorescence quenching technique. The quenching constant for TNP is found to be very high (8.06 × 104 M–1), which indicates its high quenching ability. The limit of detection is found to be 23 μM. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.9b03234 |