Active Realization of Fractional-Order Integrators and Their Application in Multiscroll Chaotic Systems

This paper presents the design, simulation, and experimental verification of the fractional-order multiscroll Lü chaotic system. We base them on op-amp-based approximations of fractional-order integrators and saturated series of nonlinear functions. The integrators are first-order active realization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complexity (New York, N.Y.) N.Y.), 2021, Vol.2021 (1)
Hauptverfasser: Munoz-Pacheco, Jesus M., Lujano-Hernández, Luis Carlos, Muñiz-Montero, Carlos, Akgül, Akif, Sánchez-Gaspariano, Luis A., Li, Chun-Biao, Çaǧri Kutlu, Mustafa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents the design, simulation, and experimental verification of the fractional-order multiscroll Lü chaotic system. We base them on op-amp-based approximations of fractional-order integrators and saturated series of nonlinear functions. The integrators are first-order active realizations tuned to reduce the inaccuracy of the frequency response. By an exponential curve fitting, we got a convenient design equation for realizing fractional-order integrators of orders from 0.1 to 0.95. The results include simulations in SPICE of the mathematical description and the electronic implementation and experimental measurements that confirm them. Monte Carlo and sensitivity tests revealed a robust realization. Contrary to its passive counterparts, the suggested realizations significantly reduce design and implementation efforts by favoring resistors and capacitors with commercial values and reducing hardware requirements.
ISSN:1076-2787
1099-0526
DOI:10.1155/2021/6623855