Experimental Research on Breakage Characteristics of Feed Pellets under Different Loading Methods
Particle breakage is a common phenomenon during the processes of production, storage, and transportation. Because of the requirements for pellet integrity in poultry farming, research on the breakage characteristics of feed pellets is necessary. In this paper, repeated compression tests under differ...
Gespeichert in:
Veröffentlicht in: | Agriculture (Basel) 2024-08, Vol.14 (8), p.1401 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Particle breakage is a common phenomenon during the processes of production, storage, and transportation. Because of the requirements for pellet integrity in poultry farming, research on the breakage characteristics of feed pellets is necessary. In this paper, repeated compression tests under different loading forces and repeated impact tests under different air pressures were carried out with feed pellets as the research object. The breakage behaviors were described, and the particle size distribution of feed pellets was analyzed quantitatively. The results revealed a positive correlation between crack density in feed particle beds and loading force. The compression process was divided into three stages based on force–displacement curves. The size of the feed pellets during repeated impacts decreased continuously and was negatively correlated with air pressure. The Weibull function accurately described the particle size distribution, with R[sup.2] values exceeding 0.97 and 0.96. The Weibull parameters showed a steady breakage degree in compression tests and a growing breakage degree in impact tests. The variation in energy and pulverization rate under different loading conditions was examined as the number of loading cycles increased. The relationship between energy and pulverization rates was fitted, showing that both parameters increased with loading cycles in different loading methods. The model of Vogel and Peukert could describe the relationship between energy and pulverization rate well, with R[sup.2] values exceeding 0.94. The minimum energy required for pellet breakage was higher in compression than in impact due to the compaction of the feed particle bed during repeated compression. The results can provide basic theory and data support for breakage characteristics and quality evaluation of feed pellets. |
---|---|
ISSN: | 2077-0472 2077-0472 |
DOI: | 10.3390/agriculture14081401 |