Neuroplastin deletion in glutamatergic neurons impairs selective brain functions and calcium regulation: implication for cognitive deterioration

The cell adhesion molecule neuroplastin (Np) is a novel candidate to influence human intelligence. Np-deficient mice display complex cognitive deficits and reduced levels of Plasma Membrane Ca 2+ ATPases (PMCAs), an essential regulator of the intracellular Ca 2+ concentration ([iCa 2+ ]) and neurona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-08, Vol.7 (1), p.7273-13, Article 7273
Hauptverfasser: Herrera-Molina, Rodrigo, Mlinac-Jerkovic, Kristina, Ilic, Katarina, Stöber, Franziska, Vemula, Sampath Kumar, Sandoval, Mauricio, Milosevic, Natasa Jovanov, Simic, Goran, Smalla, Karl-Heinz, Goldschmidt, Jürgen, Bognar, Svjetlana Kalanj, Montag, Dirk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The cell adhesion molecule neuroplastin (Np) is a novel candidate to influence human intelligence. Np-deficient mice display complex cognitive deficits and reduced levels of Plasma Membrane Ca 2+ ATPases (PMCAs), an essential regulator of the intracellular Ca 2+ concentration ([iCa 2+ ]) and neuronal activity. We show abundant expression and conserved cellular and molecular features of Np in glutamatergic neurons in human hippocampal-cortical pathways as characterized for the rodent brain. In Nptn lox/loxEmx1Cre mice, glutamatergic neuron-selective Np ablation resulted in behavioral deficits indicating hippocampal, striatal, and sensorimotor dysfunction paralleled by highly altered activities in hippocampal CA1 area, sensorimotor cortex layers I-III/IV, and the striatal sensorimotor domain detected by single-photon emission computed tomography. Altered hippocampal and cortical activities correlated with reduction of distinct PMCA paralogs in Nptn lox/loxEmx1Cre mice and increased [iCa 2+ ] in cultured mutant neurons. Human and rodent Np enhanced the post-transcriptional expression of and co-localized with PMCA paralogs in the plasma membrane of transfected cells. Our results indicate Np as essential for PMCA expression in glutamatergic neurons allowing proper [iCa 2+ ] regulation and normal circuit activity. Neuron-type-specific Np ablation empowers the investigation of circuit-coded learning and memory and identification of causal mechanisms leading to cognitive deterioration.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-07839-9