The Identification of ECG Signals Using WT-UKF and IPSO-SVM

The biometric identification method is a current research hotspot in the pattern recognition field. Due to the advantages of electrocardiogram (ECG) signals, which are difficult to replicate and easy to obtain, ECG-based identity identification has become a new direction in biometric recognition res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2022-03, Vol.22 (5), p.1962
Hauptverfasser: Li, Ning, Zhu, Longhui, Ma, Wentao, Wang, Yelin, He, Fuxing, Zheng, Aixiang, Zhang, Xiaoping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The biometric identification method is a current research hotspot in the pattern recognition field. Due to the advantages of electrocardiogram (ECG) signals, which are difficult to replicate and easy to obtain, ECG-based identity identification has become a new direction in biometric recognition research. In order to improve the accuracy of ECG signal identification, this paper proposes an ECG identification method based on a multi-scale wavelet transform combined with the unscented Kalman filter (WT-UKF) algorithm and the improved particle swarm optimization-support vector machine (IPSO-SVM). First, the WT-UKF algorithm can effectively eliminate the noise components and preserve the characteristics of ECG signals when denoising the ECG data. Then, the wavelet positioning method is used to detect the feature points of the denoised signals, and the obtained feature points are combined with multiple feature vectors to characterize the ECG signals, thus reducing the data dimension in identity identification. Finally, SVM is used for ECG signal identification, and the improved particle swarm optimization (IPSO) algorithm is used for parameter optimization in SVM. According to the analysis of simulation experiments, compared with the traditional WT denoising, the WT-UKF method proposed in this paper improves the accuracy of feature point detection and increases the final recognition rate by 1.5%. The highest recognition accuracy of a single individual in the entire ECG identification system achieves 100%, and the average recognition accuracy can reach 95.17%.
ISSN:1424-8220
1424-8220
DOI:10.3390/s22051962