Amazon savannization and climate change are projected to increase dry season length and temperature extremes over Brazil

Land use change and atmospheric composition, two drivers of climate change, can interact to affect both local and remote climate regimes. Previous works have considered the effects of greenhouse gas buildup in the atmosphere and the effects of Amazon deforestation in atmospheric general circulation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-03, Vol.14 (1), p.5131-11, Article 5131
Hauptverfasser: Bottino, Marcus Jorge, Nobre, Paulo, Giarolla, Emanuel, da Silva Junior, Manoel Baptista, Capistrano, Vinicius Buscioli, Malagutti, Marta, Tamaoki, Jonas Noboru, de Oliveira, Beatriz Fátima Alves, Nobre, Carlos Afonso
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Land use change and atmospheric composition, two drivers of climate change, can interact to affect both local and remote climate regimes. Previous works have considered the effects of greenhouse gas buildup in the atmosphere and the effects of Amazon deforestation in atmospheric general circulation models. In this study, we investigate the impacts of the Brazilian Amazon savannization and global warming in a fully coupled ocean-land-sea ice-atmosphere model simulation. We find that both savannization and global warming individually lengthen the dry season and reduce annual rainfall over large tracts of South America. The combined effects of land use change and global warming resulted in a mean annual rainfall reduction of 44% and a dry season length increase of 69%, when averaged over the Amazon basin, relative to the control run. Modulation of inland moisture transport due to savannization shows the largest signal to explain the rainfall reduction and increase in dry season length over the Amazon and Central-West. The combined effects of savannization and global warming resulted in maximum daily temperature anomalies, reaching values of up to 14 °C above the current climatic conditions over the Amazon. Also, as a consequence of both climate drivers, both soil moisture and surface runoff decrease over most of the country, suggesting cascading negative future impacts on both agriculture production and hydroelectricity generation.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-55176-5