Insights into Segmentation Methods Applied to Remote Sensing SAR Images for Wet Snow Detection
Monitoring variations in the extent of wet snow over space and time is essential for many applications, such as hydrology, mountain ecosystems, meteorology and avalanche forecasting. The Synthetic Aperture Radar (SAR) measurements from the Sentinel-1 satellite help detect wet snow in almost all weat...
Gespeichert in:
Veröffentlicht in: | Geosciences (Basel) 2023-07, Vol.13 (7), p.193 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Monitoring variations in the extent of wet snow over space and time is essential for many applications, such as hydrology, mountain ecosystems, meteorology and avalanche forecasting. The Synthetic Aperture Radar (SAR) measurements from the Sentinel-1 satellite help detect wet snow in almost all weather conditions. Most detection methods use a fixed threshold to a winter image ratio with one or two reference images (with no snow or dry snow). This study aimed to explore the potential of image segmentation methods from different families applied to Sentinel-1 SAR images to improve the detection of wet snow over the French Alps. Several segmentation methods were selected and tested on a large alpine area of 100 × 100 km2. The segmentation methods were evaluated over one season using total snow masks from Sentinel-2 optical measurements and outputs from forecasters’ bulletins combining model and in-situ observations. Different metrics were used (such as snow probability, correlations, Hamming distance, and structure similarity scores). The standard scores illustrated that filtering globally improved the segmentation results. Using a probabilistic score as a function of altitude highlights the interest in some segmentation methods, and we show that these scores could be relevant to calibrate the parameters of these methods better. |
---|---|
ISSN: | 2076-3263 2076-3263 |
DOI: | 10.3390/geosciences13070193 |