Antibacterial Activity of Silver Nanoparticles (AgNP) Confined to Mesostructured, Silica-Based Calcium Phosphate Against Methicillin-Resistant Staphylococcus Aureus (MRSA)
, which is commonly found in hospitals, has become a major problem in infection control. In this study, Ag/80S bioactive ceramics used for enhanced antibacterial applications have been developed. An in vitro bioactivity test of the Ag/80S bioactive ceramic powders was performed in a phosphate-buffer...
Gespeichert in:
Veröffentlicht in: | Nanomaterials (Basel, Switzerland) Switzerland), 2020-06, Vol.10 (7), p.1264 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | , which is commonly found in hospitals, has become a major problem in infection control. In this study, Ag/80S bioactive ceramics used for enhanced antibacterial applications have been developed. An in vitro bioactivity test of the Ag/80S bioactive ceramic powders was performed in a phosphate-buffered saline (PBS). To explore the antibacterial activity of the Ag/80S bioactive ceramic powders, the Kirby-Bauer susceptibility test, the kinetics of microbial growth analysis and the colony-forming capacity assay were used to determine their minimum inhibitory concentration (MIC) against methicillin-resistant
(MRSA). The results confirmed that the Ag/80S bioactive ceramic powders have antibacterial activity against MRSA (ATCC 33592) and MRSA (ATCC 49476). |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano10071264 |