Smart Deployable Scissor Lift Brace to Mitigate Earthquake Risks of Soft-Story Buildings

This article introduces a novel smart deployable scissor lift brace system designed to mitigate earthquake risks in buildings prone to the soft-story effect. The system addresses the limitations of traditional retrofitting methods, providing an efficient solution for enhancing the structural integri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2025-01, Vol.15 (1), p.27
Hauptverfasser: Rangrej, Vijayalaxmi, Chan, Ricky W. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article introduces a novel smart deployable scissor lift brace system designed to mitigate earthquake risks in buildings prone to the soft-story effect. The system addresses the limitations of traditional retrofitting methods, providing an efficient solution for enhancing the structural integrity of buildings while preserving the functionality of open lower floors, commonly used for car parking or retail spaces. The soft-story effect, characterized by a sudden reduction in lateral stiffness in one or more levels of a building, often leads to catastrophic collapses during large earthquakes, resulting in significant structural damage and loss of life. The proposed system is triggered by signals from the Earthquake Early Warning (EEW) system, advanced technologies capable of detecting and broadcasting earthquake alerts within seconds which are currently implemented in countries and regions such as Japan, parts of the USA, and parts of Europe. The smart deployable system functions by instantly activating upon receiving EEW signals. Unlike traditional retrofitting approaches, such as adding braces or infill walls, which compromise the open layout of lower floors, this innovative device deploys dynamically during seismic events to enhance the building’s stiffness and lateral stability. The article demonstrates the system’s functionality through a conceptual framework supported by proof-of-concept experiments. Historical earthquake time histories are simulated to test its effectiveness. The results reveal that the system significantly improves the stiffness of the structure, reducing displacement responses during events of seismic activity. If properly proportioned and optimized, this system has the potential for widespread commercialization as a seismic risk mitigation solution for buildings vulnerable to the soft-story effect.
ISSN:2076-3417
2076-3417
DOI:10.3390/app15010027