A kind of system of multivariate variational inequalities and the existence theorem of solutions
Let K be a nonempty closed convex and bounded subset of a reflexive Banach space X . Let A 1 , A 2 , … , A N be N -variables monotone demi-continuous mappings from K N into X . Then: (1) the system of multivariate variational inequalities { 〈 A 1 ( x 1 , x 2 , … , x N ) , y 1 − x 1 〉 ≥ 0 , ∀ y 1 ∈ K...
Gespeichert in:
Veröffentlicht in: | Journal of inequalities and applications 2017, Vol.2017 (1), p.208-10, Article 208 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
K
be a nonempty closed convex and bounded subset of a reflexive Banach space
X
. Let
A
1
,
A
2
,
…
,
A
N
be
N
-variables monotone demi-continuous mappings from
K
N
into
X
. Then: (1) the system of multivariate variational inequalities
{
〈
A
1
(
x
1
,
x
2
,
…
,
x
N
)
,
y
1
−
x
1
〉
≥
0
,
∀
y
1
∈
K
,
〈
A
2
(
x
1
,
x
2
,
…
,
x
N
)
,
y
2
−
x
2
〉
≥
0
,
∀
y
2
∈
K
,
⋯
〈
A
N
(
x
1
,
x
2
,
…
,
x
N
)
,
y
N
−
x
N
〉
≥
0
,
∀
y
N
∈
K
,
has a solution
(
x
1
∗
,
x
2
∗
,
…
,
x
N
∗
)
∈
K
N
; (2) the set of solutions of this system of multivariate variational inequalities is closed convex in
K
N
; (3) if
A
1
,
A
2
,
…
,
A
N
are also strictly monotone, this system of multivariate variational inequalities has a unique solution. |
---|---|
ISSN: | 1025-5834 1029-242X 1029-242X |
DOI: | 10.1186/s13660-017-1486-9 |