SURROGATE MODEL OPTIMIZATION OF A ‘MICRO CORE’ PWR FUEL ASSEMBLY ARRANGEMENT USING DEEP LEARNING MODELS
This paper investigates the applicability of surrogate model optimization (SMO) using deep learning regression models to automatically embed knowledge about the objective function into the optimization process. This paper demonstrates two deep learning SMO methods for calculating simple neutronics p...
Gespeichert in:
Veröffentlicht in: | EPJ Web of conferences 2021-01, Vol.247, p.12003 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper investigates the applicability of surrogate model optimization (SMO) using deep learning regression models to automatically embed knowledge about the objective function into the optimization process. This paper demonstrates two deep learning SMO methods for calculating simple neutronics parameters. Using these models, SMO returns results comparable with those from the early stages of direct iterative optimization. However, for this study, the cost of creating the training set outweighs the benefits of the surrogate models. |
---|---|
ISSN: | 2100-014X 2100-014X |
DOI: | 10.1051/epjconf/202124712003 |