The bactericidal effect of lysostaphin coupled with liposomal vancomycin as a dual combating system applied directly on methicillin-resistant Staphylococcus aureus infected skin wounds in mice
Methicillin-resistant (MRSA) is one of the most common causes of surgical infection, and its resistance to numerous conventional antibiotics makes treatment difficult. Although vancomycin is often an effective agent for the initial therapy of MRSA, clinical failure sometimes occurs. Therefore, there...
Gespeichert in:
Veröffentlicht in: | International journal of nanomedicine 2019-01, Vol.14, p.5943-5955 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Methicillin-resistant
(MRSA) is one of the most common causes of surgical infection, and its resistance to numerous conventional antibiotics makes treatment difficult. Although vancomycin is often an effective agent for the initial therapy of MRSA, clinical failure sometimes occurs. Therefore, there is an urgent need to develop better therapies. Here, we prepared some vancomycin-loaded nanoliposomes coupled with anti-staphylococcal protein (lysostaphin) and evaluated their in vitro and in vivo efficacy as a topical MRSA therapy.
Vancomycin was encapsulated in liposomes, and the coupling of lysostaphin with the surface of liposomes was carried out through cyanuric functional groups. The bactericidal efficacies and a full characterization were evaluated. To define different nanoliposomal-bacterium interactions and their bactericidal effect, flow cytometry was employed. Finally, in vivo, the topical antibacterial activity of each formulation was measured against surgical wound MRSA infection in a mouse model.
High encapsulation and conjugation efficiency were achieved for all formulations. All the formulations showed a significant reduction in bacterial counts (
0.05). The targeted liposomes more effectively suppress bacterial infection in vitro and in vivo relative to equivalent doses of untargeted vancomycin liposome. The flow cytometry results confirmed liposome-bacterium interactions, which increased during the incubation time. The maximum binding rate and the bactericidal effect were significantly higher in targeted liposomes (
0.05) compared with control liposomes.
Our data suggest a novel nano-vehicle (lysostaphin-conjugated coupled liposomal vancomycin) which could be used as a great topical antimicrobial construct for treatment of MRSA skin infections. |
---|---|
ISSN: | 1178-2013 1176-9114 1178-2013 |
DOI: | 10.2147/IJN.S214521 |