Single pixel imaging at megahertz switching rates via cyclic Hadamard masks

Optical imaging is commonly performed with either a camera and wide-field illumination or with a single detector and a scanning collimated beam; unfortunately, these options do not exist at all wavelengths. Single-pixel imaging offers an alternative that can be performed with a single detector and w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-07, Vol.12 (1), p.4516-4516, Article 4516
Hauptverfasser: Hahamovich, Evgeny, Monin, Sagi, Hazan, Yoav, Rosenthal, Amir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optical imaging is commonly performed with either a camera and wide-field illumination or with a single detector and a scanning collimated beam; unfortunately, these options do not exist at all wavelengths. Single-pixel imaging offers an alternative that can be performed with a single detector and wide-field illumination, potentially enabling imaging applications in which the detection and illumination technologies are immature. However, single-pixel imaging currently suffers from low imaging rates owing to its reliance on configurable spatial light modulators, generally limited to 22 kHz rates. We develop an approach for rapid single-pixel imaging which relies on cyclic patterns coded onto a spinning mask and demonstrate it for in vivo imaging of C. elegans worms. Spatial modulation rates of up to 2.4 MHz, imaging rates of up to 72 fps, and image-reconstruction times of down to 1.5 ms are reported, enabling real-time visualization of dynamic objects. Imaging rates in single-pixel imaging has been limited by the dependence on configurable spatial light modulators. Here, the authors use cyclic Hadamard patterns coded onto a spinning mask to demonstrate dynamic imaging with rates up to 72 frames per second and real time reconstruction capabilities.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-24850-x