A Parallel Privacy-Preserving k-Means Clustering Algorithm for Encrypted Databases in Cloud Computing
With the development of cloud computing, interest in database outsourcing has recently increased. However, when the database is outsourced, there is a problem in that the information of the data owner is exposed to internal and external attackers. Therefore, in this paper, we propose decimal-based e...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2024-01, Vol.14 (2), p.835 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the development of cloud computing, interest in database outsourcing has recently increased. However, when the database is outsourced, there is a problem in that the information of the data owner is exposed to internal and external attackers. Therefore, in this paper, we propose decimal-based encryption operation protocols that support privacy preservation. The proposed protocols improve the operational efficiency compared with binary-based encryption operation protocols by eliminating the need for repetitive operations based on bit length. In addition, we propose a privacy-preserving k-means clustering algorithm using decimal-based encryption operation protocols. The proposed k-means clustering algorithm utilizes efficient decimal-based protocols that enhance the efficiency of the encryption operations. To provide high query processing performance, we also propose a parallel k-means clustering algorithm that supports thread-based parallel processing by using a random value pool. Meanwhile, a security analysis of both the proposed k-means clustering algorithm and the proposed parallel algorithm was performed to prove their data protection, query protection, and access pattern protection capabilities. Through our performance analysis, the proposed k-means clustering algorithm shows about 10~13 times better performance compared with the existing algorithms. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app14020835 |