Application of FTIR Spectroscopy and Chemometrics for Halal Authentication of Beef Meatball Adulterated with Dog Meat

Beef meatball is one of the favorite meat-based food products among Indonesian community. Currently, beef is very expensive in Indonesian market compared to other common meat types such as chicken and lamb. This situation has intrigued some unethical meatball producers to replace or adulterate beef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indonesian journal of chemistry 2018-05, Vol.18 (2), p.376-381
Hauptverfasser: Rahayu, Wiranti Sri, Rohman, Abdul, Martono, Sudibyo, Sudjadi, Sudjadi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Beef meatball is one of the favorite meat-based food products among Indonesian community. Currently, beef is very expensive in Indonesian market compared to other common meat types such as chicken and lamb. This situation has intrigued some unethical meatball producers to replace or adulterate beef with lower priced-meat like dog meat. The objective of this study was to evaluate the capability of FTIR spectroscopy combined with chemometrics for identification and quantification of dog meat (DM) in beef meatball (BM). Meatball samples were prepared by adding DM into BM ingredients in the range of 0–100% wt/wt and were subjected to extraction using Folch method. Lipid extracts obtained from the samples were scanned using FTIR spectrophotometer at 4000–650 cm-1. Partial least square (PLS) calibration was used to quantify DM in the meatball. The results showed that combined frequency regions of 1782–1623 cm-1 and 1485-659 cm-1 using detrending treatment gave optimum prediction of DM in BM. Coefficient of determination (R2) for correlation between the actual value of DM and FTIR predicted value was 0.993 in calibration model and 0.995 in validation model. The root mean square error of calibration (RMSEC) and standard error of cross validation (SECV) were 1.63% and 2.68%, respectively. FTIR spectroscopy combined with multivariate analysis can serve as an accurate and reliable method for analysis of DM in meatball.
ISSN:1411-9420
2460-1578
DOI:10.22146/ijc.27159