Fully automated longitudinal segmentation of new or enlarged multiple sclerosis lesions using 3D convolutional neural networks
•A fully automated segmentation of new or enlarged multiple sclerosis (MS) lesions.•3D convolutional neural network (CNN) with U-net-like encoder-decoder architecture.•Simultaneous processing of baseline and follow-up scan of the same patient.•Trained on 3253 patient data from over 103 different MR...
Gespeichert in:
Veröffentlicht in: | NeuroImage clinical 2020-01, Vol.28, p.102445-102445, Article 102445 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •A fully automated segmentation of new or enlarged multiple sclerosis (MS) lesions.•3D convolutional neural network (CNN) with U-net-like encoder-decoder architecture.•Simultaneous processing of baseline and follow-up scan of the same patient.•Trained on 3253 patient data from over 103 different MR scanners.•Fast ( |
---|---|
ISSN: | 2213-1582 2213-1582 |
DOI: | 10.1016/j.nicl.2020.102445 |