Fully automated longitudinal segmentation of new or enlarged multiple sclerosis lesions using 3D convolutional neural networks

•A fully automated segmentation of new or enlarged multiple sclerosis (MS) lesions.•3D convolutional neural network (CNN) with U-net-like encoder-decoder architecture.•Simultaneous processing of baseline and follow-up scan of the same patient.•Trained on 3253 patient data from over 103 different MR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage clinical 2020-01, Vol.28, p.102445-102445, Article 102445
Hauptverfasser: Krüger, Julia, Opfer, Roland, Gessert, Nils, Ostwaldt, Ann-Christin, Manogaran, Praveena, Kitzler, Hagen H., Schlaefer, Alexander, Schippling, Sven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•A fully automated segmentation of new or enlarged multiple sclerosis (MS) lesions.•3D convolutional neural network (CNN) with U-net-like encoder-decoder architecture.•Simultaneous processing of baseline and follow-up scan of the same patient.•Trained on 3253 patient data from over 103 different MR scanners.•Fast (
ISSN:2213-1582
2213-1582
DOI:10.1016/j.nicl.2020.102445