Human blood microRNA hsa-miR-21-5p induces vitellogenin in the mosquito Aedes aegypti

Mosquito vectors transmit various diseases through blood feeding, required for their egg development. Hence, blood feeding is a major physiological event in their life cycle, during which hundreds of genes are tightly regulated. Blood is a rich source of proteins for mosquitoes, but also contains ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology 2021-07, Vol.4 (1), p.856-856, Article 856
Hauptverfasser: Perdomo, Hugo D., Hussain, Mazhar, Parry, Rhys, Etebari, Kayvan, Hedges, Lauren M., Zhang, Guangmei, Schulz, Benjamin L., Asgari, Sassan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mosquito vectors transmit various diseases through blood feeding, required for their egg development. Hence, blood feeding is a major physiological event in their life cycle, during which hundreds of genes are tightly regulated. Blood is a rich source of proteins for mosquitoes, but also contains many other molecules including microRNAs (miRNAs). Here, we found that human blood miRNAs are transported abundantly into the fat body tissue of Aedes aegypti , a key metabolic center in post-blood feeding reproductive events, where they target and regulate mosquito genes. Using an artificial diet spiked with the mimic of an abundant and stable human blood miRNA, hsa-miR-21-5p, and proteomics analysis, we found over 40 proteins showing differential expression in female Ae. aegypti mosquitoes after feeding. Of interest, we found that the miRNA positively regulates the vitellogenin gene, coding for a yolk protein produced in the mosquito fat body and then transported to the ovaries as a protein source for egg production. Inhibition of hsa-miR-21-5p followed by human blood feeding led to a statistically insignificant reduction in progeny production. The results provide another example of the involvement of small regulatory molecules in the interaction of taxonomically vastly different taxa. Perdomo et al. fed mosquitos ( Aedes aegypti ) a diet spiked with human blood miRNA, hsa-miR-21-5p and used proteomics analysis to show differential protein expression in female Ae. aegypti mosquitoes after feeding. They showed that hsa-miR-21-5p positively regulated vitellogenin, which plays a role in egg production, thus could have effects on Ae. aegypti progeny production.
ISSN:2399-3642
2399-3642
DOI:10.1038/s42003-021-02385-7