Longitudinal changes of serum metabolomic profile after laparoscopic sleeve gastrectomy in obesity

Bariatric surgery induces significant weight loss, increases insulin sensitivity, and improves dyslipidemia. As one of the most widely performed bariatric surgeries, laparoscopic sleeve gastrectomy (LSG) is thought to improve the metabolic profile along with weight loss. The objective of this study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Endocrine Connections 2024-11, Vol.13 (11), p.1-13
Hauptverfasser: Li, Shuqi, Shi, Chenye, Wu, Haifu, Yan, Hongmei, Xia, Mingfeng, Jiao, Heng, He, Yang, Zhong, Ming, Lou, Wenhui, Gao, Xin, Bian, Hua, Chang, Xinxia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bariatric surgery induces significant weight loss, increases insulin sensitivity, and improves dyslipidemia. As one of the most widely performed bariatric surgeries, laparoscopic sleeve gastrectomy (LSG) is thought to improve the metabolic profile along with weight loss. The objective of this study was to evaluate longitudinal changes in the serum metabolite levels after LSG and elucidate the underlying mechanisms of metabolic improvement. Clinical metabolic parameters and serum samples were collected preoperatively and at 1, 3, and 6 months postoperatively from nine patients with obesity undergoing LSG. Serum metabolites were measured using a non-targeted metabolic liquid chromatography-mass spectrometry method. During the 1, 3, and 6 months postoperative follow-up, the body mass index, HOMA-IR, and liver fat content showed a gradual descending trend. A total of 328 serum metabolites were detected, and 38 were differentially expressed. The up-regulated metabolites were mainly enriched in ketone body metabolism, alpha-linolenic acid and linoleic acid metabolism, pantothenate and CoA biosynthesis, glycerolipid metabolism, and fructose and mannose degradation, while the down-regulated metabolites were closely related to caffeine metabolism, oxidation of branched-chain fatty acids, glutamate metabolism, and homocysteine degradation. Notably, nine metabolites (oxoglutarate, 2-ketobutyric acid, succinic acid semialdehyde, phthalic acid, pantetheine, eicosapentaenoate, 3-hydroxybutanoate, oxamic acid, and dihydroxyfumarate) showed persistent differential expression at 1, 3, and 6 months follow-up. Some were found to be significantly associated with weight loss, insulin resistance improvement, and liver fat content reduction. This finding may provide a new perspective for revealing novel biomarkers and mechanisms of metabolic improvement in obesity and related comorbidities.
ISSN:2049-3614
2049-3614
DOI:10.1530/EC-24-0292