Drosulfakinin signaling encodes early-life memory for adaptive social plasticity

establishes social clusters in groups, yet the underlying principles remain poorly understood. Here, we performed a systemic analysis of social network behavior (SNB) that quantifies individual social distance (SD) in a group over time. The SNB assessment in 175 inbred strains from the Genetics Refe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:eLife 2024-12, Vol.13
Hauptverfasser: Jeong, Jiwon, Kwon, Kujin, Geisseova, Terezia Klaudia, Lee, Jongbin, Kwon, Taejoon, Lim, Chunghun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:establishes social clusters in groups, yet the underlying principles remain poorly understood. Here, we performed a systemic analysis of social network behavior (SNB) that quantifies individual social distance (SD) in a group over time. The SNB assessment in 175 inbred strains from the Genetics Reference Panel showed a tight association of short SD with long developmental time, low food intake, and hypoactivity. The developmental inferiority in short-SD individuals was compensated by their group culturing. By contrast, developmental isolation silenced the beneficial effects of social interactions in adults and blunted the plasticity of SNB under physiological challenges. Transcriptome analyses revealed genetic diversity for SD traits, whereas social isolation reprogrammed select genetic pathways, regardless of SD phenotypes. In particular, social deprivation suppressed the expression of the neuropeptide Drosulfakinin ( ) in three pairs of adult brain neurons. Male-specific DSK signaling to cholecystokinin-like receptor 17D1 mediated the SNB plasticity. In fact, transgenic manipulations of the DSK neuron activity were sufficient to imitate the state of social experience. Given the functional conservation of mammalian homologs, we propose that animals may have evolved a dedicated neural mechanism to encode early-life experience and transform group properties adaptively.
ISSN:2050-084X
2050-084X
DOI:10.7554/eLife.103973