Automatic Detection Method of Dairy Cow Feeding Behaviour Based on YOLO Improved Model and Edge Computing

The feeding behaviour of cows is an essential sign of their health in dairy farming. For the impression of cow health status, precise and quick assessment of cow feeding behaviour is critical. This research presents a method for monitoring dairy cow feeding behaviour utilizing edge computing and dee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2022-04, Vol.22 (9), p.3271
Hauptverfasser: Yu, Zhenwei, Liu, Yuehua, Yu, Sufang, Wang, Ruixue, Song, Zhanhua, Yan, Yinfa, Li, Fade, Wang, Zhonghua, Tian, Fuyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The feeding behaviour of cows is an essential sign of their health in dairy farming. For the impression of cow health status, precise and quick assessment of cow feeding behaviour is critical. This research presents a method for monitoring dairy cow feeding behaviour utilizing edge computing and deep learning algorithms based on the characteristics of dairy cow feeding behaviour. Images of cow feeding behaviour were captured and processed in real time using an edge computing device. A DenseResNet-You Only Look Once (DRN-YOLO) deep learning method was presented to address the difficulties of existing cow feeding behaviour detection algorithms' low accuracy and sensitivity to the open farm environment. The deep learning and feature extraction enhancement of the model was improved by replacing the CSPDarknet backbone network with the self-designed DRNet backbone network based on the YOLOv4 algorithm using multiple feature scales and the Spatial Pyramid Pooling (SPP) structure to enrich the scale semantic feature interactions, finally achieving the recognition of cow feeding behaviour in the farm feeding environment. The experimental results showed that DRN-YOLO improved the accuracy, recall, and mAP by 1.70%, 1.82%, and 0.97%, respectively, compared to YOLOv4. The research results can effectively solve the problems of low recognition accuracy and insufficient feature extraction in the analysis of dairy cow feeding behaviour by traditional methods in complex breeding environments, and at the same time provide an important reference for the realization of intelligent animal husbandry and precision breeding.
ISSN:1424-8220
1424-8220
DOI:10.3390/s22093271