Wastewater treatment using chitosan and its derivatives: A mini review on latest developments

Effluents and contaminants released from the industries are needed to be treated before releasing them to water bodies. Most common effluents from these industrial wastes are organic compounds, dyes and heavy metals. Heavy metals and their associated anions, as well as organic material, have been se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Notulae scientia biologicae 2022-12, Vol.14 (4), p.11369
Hauptverfasser: SURESH, Sreehari, UEMSH, Mridul, SANTHOSH, Adhithya S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Effluents and contaminants released from the industries are needed to be treated before releasing them to water bodies. Most common effluents from these industrial wastes are organic compounds, dyes and heavy metals. Heavy metals and their associated anions, as well as organic material, have been separated from wastewaters in industries using a variety of methods. Adsorption is an effective method for water treatment as they are less energy consuming and cost effective. Biopolymers such as chitosan, cellulose, keratin are used for the process of adsorption as they are present abundantly and recyclable. Chitosan is a deacetylated product of chitin. Chitosan and its derivatives are extremely essential due to their abundant availability, low cost, environmental friendliness, and biodegradability and can be widely applied in wastewater treatment. -NH2 and -OH groups are present in chitosan and provide chitosan an opportunity to make physical and chemical modifications. Modifications of chitosan into hydrogels and nanocomposites provide wider applications in wastewater treatment.
ISSN:2067-3264
2067-3205
2067-3264
DOI:10.55779/nsb14411369