An Effective Student Grouping and Course Recommendation Strategy Based on Big Data in Education

Personalized education aims to provide cooperative and exploratory courses for students by using computer and network technology to construct a more effective cooperative learning mode, thus improving students’ cooperation ability and lifelong learning ability. Based on students’ interests, this pap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information (Basel) 2022-04, Vol.13 (4), p.197
Hauptverfasser: Guo, Yu, Chen, Yue, Xie, Yuanyan, Ban, Xiaojuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Personalized education aims to provide cooperative and exploratory courses for students by using computer and network technology to construct a more effective cooperative learning mode, thus improving students’ cooperation ability and lifelong learning ability. Based on students’ interests, this paper proposes an effective student grouping strategy and group-oriented course recommendation method, comprehensively considering characteristics of students and courses both from a statistical dimension and a semantic dimension. First, this paper combines term frequency–inverse document frequency and Word2Vec to preferably extract student characteristics. Then, an improved K-means algorithm is used to divide students into different interest-based study groups. Finally, the group-oriented course recommendation method recommends appropriate and quality courses according to the similarity and expert score. Based on real data provided by junior high school students, a series of experiments are conducted to recommend proper social practical courses, which verified the feasibility and effectiveness of the proposed strategy.
ISSN:2078-2489
2078-2489
DOI:10.3390/info13040197