Integrated Active Suspension and Anti-Lock Braking Control for Four-Wheel-Independent-Drive Electric Vehicles
This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system (ASS) and anti-lock braking system (ABS). First, a longitudinal-vertical coupled vehicle dy...
Gespeichert in:
Veröffentlicht in: | Chinese journal of mechanical engineering 2024-03, Vol.37 (1), p.20-12, Article 20 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system (ASS) and anti-lock braking system (ABS). First, a longitudinal-vertical coupled vehicle dynamics model is established by integrating a road input model. Then the coupling mechanisms between longitudinal and vertical vehicle dynamics are analyzed. An ASS-ABS integrated control system is proposed, utilizing an
H
∞
controller for ASS to optimize load transfer effect and a neural network sliding mode control for ABS implementation. Finally, the effectiveness of the proposed control scheme is evaluated through comprehensive tests conducted on a hardware-in-loop (HIL) test platform. The HIL test results demonstrate that the proposed control scheme can significantly improve the braking performance and ride comfort compared to conventional ABS control methods. |
---|---|
ISSN: | 2192-8258 1000-9345 2192-8258 |
DOI: | 10.1186/s10033-024-00997-8 |