A novel digital intervention for actively reducing severity of paediatric ADHD (STARS-ADHD): a randomised controlled trial
Attention-deficit hyperactivity disorder (ADHD) is a common paediatric neurodevelopmental disorder with substantial effect on families and society. Alternatives to traditional care, including novel digital therapeutics, have shown promise to remediate cognitive deficits associated with this disorder...
Gespeichert in:
Veröffentlicht in: | The Lancet. Digital health 2020-04, Vol.2 (4), p.e168-e178 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Attention-deficit hyperactivity disorder (ADHD) is a common paediatric neurodevelopmental disorder with substantial effect on families and society. Alternatives to traditional care, including novel digital therapeutics, have shown promise to remediate cognitive deficits associated with this disorder and may address barriers to standard therapies, such as pharmacological interventions and behavioural therapy. AKL-T01 is an investigational digital therapeutic designed to target attention and cognitive control delivered through a video game-like interface via at-home play for 25 min per day, 5 days per week for 4 weeks. This study aimed to assess whether AKL-T01 improved attentional performance in paediatric patients with ADHD.
The Software Treatment for Actively Reducing Severity of ADHD (STARS-ADHD) was a randomised, double-blind, parallel-group, controlled trial of paediatric patients (aged 8–12 years, without disorder-related medications) with confirmed ADHD and Test of Variables of Attention (TOVA) Attention Performance Index (API) scores of −1·8 and below done by 20 research institutions in the USA. Patients were randomly assigned 1:1 to AKL-T01 or a digital control intervention. The primary outcome was mean change in TOVA API from pre-intervention to post-intervention. Safety, tolerability, and compliance were also assessed. Analyses were done in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, NCT02674633 and is completed.
Between July 15, 2016, and Nov 30, 2017, 857 patients were evaluated and 348 were randomly assigned to receive AKL-T01 or control. Among patients who received AKL-T01 (n=180 [52%]; mean [SD] age, 9·7 [1·3] years) or control (n=168 [48%]; mean [SD] age, 9·6 [1·3] years), the non-parametric estimate of the population median change from baseline TOVA API was 0·88 (95% CI 0·24–1·49; p=0·0060). The mean (SD) change from baseline on the TOVA API was 0·93 (3·15) in the AKL-T01 group and 0·03 (3·16) in the control group. There were no serious adverse events or discontinuations. Treatment-related adverse events were mild and included frustration (5 [3%] of 180) and headache (3 [2%] of 180). Patient compliance was a mean of 83 (83%) of 100 expected sessions played (SD, 29·2 sessions).
Although future research is needed for this digital intervention, this study provides evidence that AKL-T01 might be used to improve objectively measured inattention in paediatric patients with ADHD, while presenting minimal a |
---|---|
ISSN: | 2589-7500 2589-7500 |
DOI: | 10.1016/S2589-7500(20)30017-0 |