An emergent attractor network in a passive resistive switching circuit

Resistive memory devices feature drastic conductance change and fast switching dynamics. Particularly, nonvolatile bipolar switching events (set and reset) can be regarded as a unique nonlinear activation function characteristic of a hysteretic loop. Upon simultaneous activation of multiple rows in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-09, Vol.15 (1), p.7683-9, Article 7683
Hauptverfasser: Li, Yongxiang, Wang, Shiqing, Yang, Ke, Yang, Yuchao, Sun, Zhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Resistive memory devices feature drastic conductance change and fast switching dynamics. Particularly, nonvolatile bipolar switching events (set and reset) can be regarded as a unique nonlinear activation function characteristic of a hysteretic loop. Upon simultaneous activation of multiple rows in a crosspoint array, state change of one device may contribute to the conditional switching of others, suggesting an interactive network existing in the circuit. Here, we prove that a passive resistive switching circuit is essentially an attractor network, where the binary memory devices are artificial neurons while the pairwise voltage differences define an anti-symmetric weight matrix. An energy function is successfully constructed for this network, showing that every switching in the circuit would decrease the energy. Due to the nonvolatile hysteretic function, the energy change for bit flip in this network is thresholded, which is different from the classic Hopfield network. It allows more stable states stored in the circuit, thus representing a highly compact and efficient solution for associative memory. Network dynamics (towards stable states) and their modulations by external voltages have been demonstrated in experiment by 3-neuron and 4-neuron circuits. The switching dynamics in resistive memory hardware enables efficient computations, such as stateful logic and temporal information processing. The authors show that a passive resistive switching circuit represented as an attractor network model provides high-capacity, compact and efficient solution for associative memory.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-52132-9